Cephalochordata: Branchiostoma
The cephalochordate amphioxus, a basal chordate discovered by Pallas in 1774, is the best available stand-in for the proximate invertebrate ancestor of vertebrates. It has a vertebrate-like body plan, including a notochord, a hollow dorsal neural tube, a post-anal tail, segmented muscle blocks, gill slits, and posterior direction of blood flow in the dorsal vessels and anterior direction of blood flow in the ventral vessels (Kowalevsky 1867; Rähr 1979). However, this animal is much less complex than vertebrates as it has a genome (17% that of the human genome) uncomplicated by extensive genomic duplication (Gibson-Brown et al. 2003; Putnam et al. 2008) and lacks lymphoid organs and free circulating blood cells (Gans et al. 1996; Metchnikoff 1891; Möller and Philpott 1973a, b; Silva et al. 1995). Thus, amphioxus is an ideal model for gaining insights into the origin and evolution of the immune system in vertebrates. Over the past decade, great progress has been made in the study of amphioxus immunity. In this chapter we focus on the recent progress of immunity study in amphioxus.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 160.49 Price includes VAT (France)
Softcover Book EUR 210.99 Price includes VAT (France)
Hardcover Book EUR 295.39 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
MHC and adaptive immunity in teleost fishes
Article 10 July 2017
A cold-blooded view of adaptive immunity
Article 19 March 2018
Cephalochordata
Chapter © 2015
References
- Abe Y, Tokuda M, Ishimoto R, Azumi K, Yokosawa H (1999) A unique primary structure, cDNA cloning and function of a galactose-specific lectin from ascidian plasma. Eur J Biochem/FEBS 261(1):33–39 ArticleCASGoogle Scholar
- Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31(1):100–105. https://doi.org/10.1038/ng855ArticleCASPubMedGoogle Scholar
- An Y, Fan N, Zhang S (2009) Creatine kinase is a bacteriostatic factor with a lectin-like activity. Mol Immunol 46(13):2666–2670. https://doi.org/10.1016/j.molimm.2009.04.001ArticleCASPubMedGoogle Scholar
- Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67(2):201–216. https://doi.org/10.1007/s00018-009-0161-9ArticleCASPubMedGoogle Scholar
- Bajoghli B, Aghaallaei N, Hess I, Rode I, Netuschil N, Tay BH, Venkatesh B, Yu JK, Kaltenbach SL, Holland ND, Diekhoff D, Happe C, Schorpp M, Boehm T (2009) Evolution of genetic networks underlying the emergence of thymopoiesis in vertebrates. Cell 138(1):186–197. https://doi.org/10.1016/j.cell.2009.04.017ArticleCASPubMedGoogle Scholar
- Bertrand S, Campo-Paysaa F, Camasses A, Garcia-Fernandez J, Escriva H (2009) Actors of the tyrosine kinase receptor downstream signaling pathways in amphioxus. Evol Dev 11(1):13–26. https://doi.org/10.1111/j.1525-142X.2008.00299.xArticleCASPubMedGoogle Scholar
- Beutler B, Eidenschenk C, Crozat K, Imler JL, Takeuchi O, Hoffmann JA, Akira S (2007) Genetic analysis of resistance to viral infection. Nat Rev Immunol 7(10):753–766. https://doi.org/10.1038/nri2174ArticleCASPubMedGoogle Scholar
- Bidon N, Brichory F, Bourguet P, Le Pennec JP, Dazord L (2001) Galectin-8: a complex sub-family of galectins (review). Int J Mol Med 8(3):245–250 CASPubMedGoogle Scholar
- Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153(3731):80–82 ArticleCASPubMedGoogle Scholar
- Boehm T, Hess I, Swann JB (2012) Evolution of lymphoid tissues. Trends Immunol 33(6):315–321. https://doi.org/10.1016/j.it.2012.02.005ArticleCASPubMedGoogle Scholar
- Cai L, Zhu J, Yin D, Chen L, Jin P, Ma F (2014) Identification and characterization of complement factor H in Branchiostoma belcheri. Gene 553(1):42–48. https://doi.org/10.1016/j.gene.2014.09.061ArticleCASPubMedGoogle Scholar
- Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35(1):127–160 ArticleCASPubMedGoogle Scholar
- Cannon JP, Haire RN, Litman GW (2002) Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol 3(12):1200–1207. https://doi.org/10.1038/ni849ArticleCASPubMedGoogle Scholar
- Cannon JP, Haire RN, Schnitker N, Mueller MG, Litman GW (2004) Individual protochordates have unique immune-type receptor repertoires. Curr Biol CB 14(12):R465–R466. https://doi.org/10.1016/j.cub.2004.06.009ArticleCASPubMedGoogle Scholar
- Cao DD, Liao X, Cheng W, Jiang YL, Wang WJ, Li Q, Chen JY, Chen Y, Zhou CZ (2016) Structure of a variable lymphocyte receptor-like protein from the amphioxus Branchiostoma floridae. Sci Rep 6:19951. https://doi.org/10.1038/srep19951ArticleCASPubMedPubMed CentralGoogle Scholar
- Clow LA, Raftos DA, Gross PS, Smith LC (2004) The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol 207(Pt 12):2147–2155 ArticleCASPubMedGoogle Scholar
- Collette Y, Gilles A, Pontarotti P, Olive D (2003) A co-evolution perspective of the TNFSF and TNFRSF families in the immune system. Trends Immunol 24(7):387–394 ArticleCASPubMedGoogle Scholar
- Cummings RD, Liu FT (2009) Galectins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn, Cold Spring Harbor, New York Google Scholar
- Datta R, deSchoolmeester ML, Hedeler C, Paton NW, Brass AM, Else KJ (2005) Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite. Infect Immun 73(7):4025–4033. https://doi.org/10.1128/IAI.73.7.4025-4033.2005ArticleCASPubMedPubMed CentralGoogle Scholar
- Dheilly NM, Haynes PA, Bove U, Nair SV, Raftos DA (2011) Comparative proteomic analysis of a sea urchin (Heliocidaris erythrogramma) antibacterial response revealed the involvement of apextrin and calreticulin. J Invertebr Pathol 106(2):223–229. https://doi.org/10.1016/j.jip.2010.09.008ArticleCASPubMedGoogle Scholar
- Dishaw LJ, Giacomelli S, Melillo D, Zucchetti I, Haire RN, Natale L, Russo NA, De Santis R, Litman GW, Pinto MR (2011) A role for variable region-containing chitin-binding proteins (VCBPs) in host gut-bacteria interactions. Proc Natl Acad Sci U S A 108(40):16747–16752. https://doi.org/10.1073/pnas.1109687108ArticlePubMedPubMed CentralGoogle Scholar
- Dishaw LJ, Leigh B, Cannon JP, Liberti A, Mueller MG, Skapura DP, Karrer CR, Pinto MR, De Santis R, Litman GW (2016) Gut immunity in a protochordate involves a secreted immunoglobulin-type mediator binding host chitin and bacteria. Nat Commun 7:10617. https://doi.org/10.1038/ncomms10617ArticleCASPubMedPubMed CentralGoogle Scholar
- Dodd RB, Drickamer K (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11(5):71R–79R ArticleCASPubMedGoogle Scholar
- Du J, Xie X, Chen H, Yang W, Dong M, Su J, Wang Y, Yu C, Zhang S, Xu A (2004) Macrophage migration inhibitory factor (MIF) in Chinese amphioxus as a molecular marker of immune evolution during the transition of invertebrate/vertebrate. Dev Comp Immunol 28(10):961–971. https://doi.org/10.1016/j.dci.2004.04.001ArticleCASPubMedGoogle Scholar
- Du J, Yu Y, Tu H, Chen H, Xie X, Mou C, Feng K, Zhang S, Xu A (2006) New insights on macrophage migration inhibitory factor: based on molecular and functional analysis of its homologue of Chinese amphioxus. Mol Immunol 43(13):2083–2088. https://doi.org/10.1016/j.molimm.2005.12.007ArticleCASPubMedGoogle Scholar
- Dziarski R, Gupta D (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biol 7(8):232. https://doi.org/10.1186/gb-2006-7-8-232ArticleCASPubMedPubMed CentralGoogle Scholar
- Dziarski R, Gupta D (2010) Review: mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun 16(3):168–174. https://doi.org/10.1177/1753425910366059ArticleCASPubMedGoogle Scholar
- Elkin SK, Matthews AG, Oettinger MA (2003) The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J 22(8):1931–1938. https://doi.org/10.1093/emboj/cdg184ArticleCASPubMedPubMed CentralGoogle Scholar
- Elsbach P (1998) The bactericidal/permeability-increasing protein (BPI) in antibacterial host defense. J Leukoc Biol 64(1):14–18 ArticleCASPubMedGoogle Scholar
- Endo Y, Nonaka M, Saiga H, Kakinuma Y, Matsushita A, Takahashi M, Matsushita M, Fujita T (2003) Origin of mannose-binding lectin-associated serine protease (MASP)-1 and MASP-3 involved in the lectin complement pathway traced back to the invertebrate, amphioxus. J Immunol 170(9):4701–4707 ArticleCASPubMedGoogle Scholar
- Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166(12 Pt 2):S4–S8. https://doi.org/10.1164/rccm.2206007ArticlePubMedGoogle Scholar
- French AT, Knight PA, Smith WD, Brown JK, Craig NM, Pate JA, Miller HR, Pemberton AD (2008) Up-regulation of intelectin in sheep after infection with Teladorsagia circumcincta. Int J Parasitol 38(3–4):467–475. https://doi.org/10.1016/j.ijpara.2007.08.015ArticleCASPubMedGoogle Scholar
- Gans C, Kemp N, Poss S (1996) The lancelets: a new look at some old beasts. Weizmann, Isr J Zool 42:1–446 Google Scholar
- Gao B, Jeong WI, Tian Z (2008) Liver: an organ with predominant innate immunity. Hepatology 47(2):729–736. https://doi.org/10.1002/hep.22034ArticleCASPubMedGoogle Scholar
- Gao Z, Li M, Wu J, Zhang S (2013) Interplay between invertebrate C3a with vertebrate macrophages: functional characterization of immune activities of amphioxus C3a. Fish Shellfish Immunol 35(4):1249–1259. https://doi.org/10.1016/j.fsi.2013.07.049ArticleCASPubMedGoogle Scholar
- Gao Z, Li M, Ma J, Zhang S (2014) An amphioxus gC1q protein binds human IgG and initiates the classical pathway: implications for a C1q-mediated complement system in the basal chordate. Eur J Immunol 44(12):3680–3695. https://doi.org/10.1002/eji.201444734ArticleCASPubMedGoogle Scholar
- Gao Z, Ma Z, Qu B, Jiao D, Zhang S (2017) Identification and characterization of properdin in amphioxus: implications for a functional alternative complement pathway in the basal chordate. Fish Shellfish Immunol 65:1–8. https://doi.org/10.1016/j.fsi.2017.03.052ArticleCASPubMedGoogle Scholar
- Gibson-Brown JJ, Osoegawa K, McPherson JD, Waterston RH, De Jong PJ, Rokhsar DS, Holland LZ (2003) A proposal to sequence the amphioxus genome submitted to the joint genome institute of the US Department of energy. J Exp Zool B Mol Dev Evol 300(1):5–22 ArticlePubMedGoogle Scholar
- Grech A, Quinn R, Srinivasan D, Badoux X, Brink R (2000) Complete structural characterisation of the mammalian and Drosophila TRAF genes: implications for TRAF evolution and the role of RING finger splice variants. Mol Immunol 37(12–13):721–734 ArticleCASPubMedGoogle Scholar
- Guo P, Hirano M, Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD (2009) Dual nature of the adaptive immune system in lampreys. Nature 459(7248):796–801. https://doi.org/10.1038/nature08068ArticleCASPubMedPubMed CentralGoogle Scholar
- Guo X, Xin J, Wang P, Du X, Ji G, Gao Z, Zhang S (2017) Functional characterization of avidins in amphioxus Branchiostoma japonicum: evidence for a dual role in biotin-binding and immune response. Dev Comp Immunol 70:106–118. https://doi.org/10.1016/j.dci.2017.01.006ArticleCASPubMedGoogle Scholar
- Han L, Zhang SC, Wang YJ, Sun XT (2006) Immunohistochemical localization of vitellogenin in the hepatic diverticulum of the amphioxus Branchiostoma belcheri tsingtauense, with implications for the origin of the liver. Invertebr Biol 125(2):172–176. https://doi.org/10.1111/j.1744-7410.2006.00050.xArticleGoogle Scholar
- Han Y, Huang G, Zhang Q, Yuan S, Liu J, Zheng T, Fan L, Chen S, Xu A (2010) The primitive immune system of amphioxus provides insights into the ancestral structure of the vertebrate immune system. Dev Comp Immunol 34(8):791–796. https://doi.org/10.1016/j.dci.2010.03.009ArticleCASPubMedGoogle Scholar
- Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. https://doi.org/10.1038/nbt1267ArticleCASPubMedGoogle Scholar
- Hansen SW, Ohtani K, Roy N, Wakamiya N (2016) The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. Immunobiology 221(10):1058–1067. https://doi.org/10.1016/j.imbio.2016.05.012ArticleCASPubMedGoogle Scholar
- He Y, Tang B, Zhang S, Liu Z, Zhao B, Chen L (2008) Molecular and immunochemical demonstration of a novel member of bf/C2 homolog in amphioxus Branchiostoma belcheri: implications for involvement of hepatic cecum in acute phase response. Fish Shellfish Immunol 24(6):768–778. https://doi.org/10.1016/j.fsi.2008.03.004ArticleCASPubMedGoogle Scholar
- Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115(1):1–20. https://doi.org/10.1111/j.1365-2567.2005.02143.xArticleCASPubMedPubMed CentralGoogle Scholar
- Helbig KJ, Beard MR (2014) The role of viperin in the innate antiviral response. J Mol Biol 426(6):1210–1219. https://doi.org/10.1016/j.jmb.2013.10.019ArticleCASPubMedGoogle Scholar
- Hernandez Prada JA, Haire RN, Cannon JP, Litman GW, Ostrov DA (2004) Crystallization and preliminary X-ray analysis of VCBP3 from Branchiostoma floridae. Acta Crystallogr D Biol Crystallogr 60(Pt 11):2022–2024. https://doi.org/10.1107/S0907444904020827ArticleCASPubMedGoogle Scholar
- Hernandez Prada JA, Haire RN, Allaire M, Jakoncic J, Stojanoff V, Cannon JP, Litman GW, Ostrov DA (2006) Ancient evolutionary origin of diversified variable regions demonstrated by crystal structures of an immune-type receptor in amphioxus. Nat Immunol 7(8):875–882. https://doi.org/10.1038/ni1359ArticleCASPubMedPubMed CentralGoogle Scholar
- Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300(1):349–365. https://doi.org/10.1016/j.ydbio.2006.08.065ArticleCASPubMedGoogle Scholar
- Houzelstein D, Goncalves IR, Fadden AJ, Sidhu SS, Cooper DN, Drickamer K, Leffler H, Poirier F (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21(7):1177–1187. https://doi.org/10.1093/molbev/msh082ArticleCASPubMedGoogle Scholar
- Huang G, Xie X, Han Y, Fan L, Chen J, Mou C, Guo L, Liu H, Zhang Q, Chen S, Dong M, Liu J, Xu A (2007) The identification of lymphocyte-like cells and lymphoid-related genes in amphioxus indicates the twilight for the emergence of adaptive immune system. PLoS One 2(2):e206. https://doi.org/10.1371/journal.pone.0000206ArticleCASPubMedPubMed CentralGoogle Scholar
- Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, Liu T, Yang M, Wu K, Liu H, Ge J, Huang H, Dong M, Yu C, Chen S, Xu A (2008) Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res 18(7):1112–1126. https://doi.org/10.1101/gr.069674.107ArticleCASPubMedPubMed CentralGoogle Scholar
- Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Li J, Yang M, Xu L, Chen S, Xu A (2011a) Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 286(42):36739–36748. https://doi.org/10.1074/jbc.M111.245944ArticleCASPubMedPubMed CentralGoogle Scholar
- Huang S, Wang X, Yan Q, Guo L, Yuan S, Huang G, Huang H, Li J, Dong M, Chen S, Xu A (2011b) The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus. J Immunol 186(4):2042–2055. https://doi.org/10.4049/jimmunol.1001824ArticleCASPubMedGoogle Scholar
- Huang G, Huang S, Yan X, Yang P, Li J, Xu W, Zhang L, Wang R, Yu Y, Yuan S, Chen S, Luo G, Xu A (2014) Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proc Natl Acad Sci U S A 111(37):13469–13474. https://doi.org/10.1073/pnas.1405414111ArticleCASPubMedPubMed CentralGoogle Scholar
- Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X, Chen S, Schatz DG, Xu A (2016) Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166(1):102–114. https://doi.org/10.1016/j.cell.2016.05.032ArticleCASPubMedPubMed CentralGoogle Scholar
- Jin P, Zhou L, Song X, Qian J, Chen L, Ma F (2012) Particularity and universality of a putative gram-negative bacteria-binding protein (GNBP) gene from amphioxus (Branchiostoma belcheri): insights into the function and evolution of GNBP. Fish Shellfish Immunol 33(4):835–845. https://doi.org/10.1016/j.fsi.2012.07.016ArticleCASPubMedGoogle Scholar
- Jing X, Zhang S (2011) An ancient molecule with novel function: alanine aminotransferase as a lipopolysaccharide binding protein with bacteriocidal activity. Dev Comp Immunol 35(1):94–104. https://doi.org/10.1016/j.dci.2010.08.014ArticleCASPubMedGoogle Scholar
- Juretic D, Vukicevic D, Petrov D, Novkovic M, Bojovic V, Lucic B, Ilic N, Tossi A (2011) Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J EBJ 40(4):371–385. https://doi.org/10.1007/s00249-011-0674-7ArticleCASPubMedGoogle Scholar
- Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3(6):e181. https://doi.org/10.1371/journal.pbio.0030181ArticleCASPubMedPubMed CentralGoogle Scholar
- Kasahara M, Nakaya J, Satta Y, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13(3):90–92 ArticleCASPubMedGoogle Scholar
- Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988. https://doi.org/10.1038/ni1243ArticleCASPubMedGoogle Scholar
- Kemper C, Atkinson JP, Hourcade DE (2010) Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol 28:131–155. https://doi.org/10.1146/annurev-immunol-030409-101250ArticleCASPubMedGoogle Scholar
- Kirschning CJ, Au-Young J, Lamping N, Reuter D, Pfeil D, Seilhamer JJ, Schumann RR (1997) Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins. Genomics 46(3):416–425. https://doi.org/10.1006/geno.1997.5030ArticleCASPubMedGoogle Scholar
- Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625. https://doi.org/10.1189/jlb.1204697ArticleCASPubMedGoogle Scholar
- Kopp EB, Medzhitov R (1999) The toll-receptor family and control of innate immunity. Curr Opin Immunol 11(1):13–18 ArticleCASPubMedGoogle Scholar
- Kowalevsky AO (1867) Entwickelungsgeschichte des Amphioxus lanceolatus. Me’m Acad Imp Sci St Petersb 11:1–17 Google Scholar
- Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50(1):22–30. https://doi.org/10.3349/ymj.2009.50.1.22ArticleCASPubMedPubMed CentralGoogle Scholar
- Lei M, Liu H, Liu S, Zhang Y, Zhang S (2015) Identification and functional characterization of viperin of amphioxus Branchiostoma japonicum: implications for ancient origin of viperin-mediated antiviral response. Dev Comp Immunol 53(2):293–302. https://doi.org/10.1016/j.dci.2015.07.008ArticleCASPubMedGoogle Scholar
- Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615ArticleCASPubMedGoogle Scholar
- Leto TL, Geiszt M (2006) Role of Nox family NADPH oxidases in host defense. Antioxid Redox Signal 8(9–10):1549–1561. https://doi.org/10.1089/ars.2006.8.1549ArticleCASPubMedGoogle Scholar
- Li HY, Zhang SC (2010) Hepatic caecum of amphioxus and origin of vertebrate liver. Yi Chuan Hereditas/Zhongguo yi chuan xue hui bian ji 32(5):437–442 ArticleCASGoogle Scholar
- Li Z, Zhang S, Wang C, Pang Q (2008) Complement-mediated killing of Vibrio species by the humoral fluids of amphioxus Branchiostoma belcheri: implications for a dual role of O-antigens in the resistance to bactericidal activity. Fish Shellfish Immunol 24(2):215–222. https://doi.org/10.1016/j.fsi.2007.10.016ArticleCASPubMedGoogle Scholar
- Li J, Yuan S, Qi L, Huang S, Huang G, Yang M, Xu L, Li Y, Zhang R, Yu Y, Chen S, Xu A (2011) Functional conservation and innovation of amphioxus RIP1-mediated signaling in cell fate determination. J Immunol 187(8):3962–3971. https://doi.org/10.4049/jimmunol.1100816ArticleCASPubMedGoogle Scholar
- Liang Y, Zhang S, Wang Z (2009) Alternative complement activity in the egg cytosol of amphioxus Branchiostoma belcheri: evidence for the defense role of maternal complement components. PLoS One 4(1):e4234. https://doi.org/10.1371/journal.pone.0004234ArticleCASPubMedPubMed CentralGoogle Scholar
- Lin B, Cao Z, Su P, Zhang H, Li M, Lin Y, Zhao D, Shen Y, Jing C, Chen S, Xu A (2009) Characterization and comparative analyses of zebrafish intelectins: highly conserved sequences, diversified structures and functions. Fish Shellfish Immunol 26(3):396–405. https://doi.org/10.1016/j.fsi.2008.11.019ArticleCASPubMedGoogle Scholar
- Litman GW, Dishaw LJ, Cannon JP, Haire RN, Rast JP (2007) Alternative mechanisms of immune receptor diversity. Curr Opin Immunol 19(5):526–534. https://doi.org/10.1016/j.coi.2007.07.001ArticleCASPubMedPubMed CentralGoogle Scholar
- Liu M, Zhang S, Liu Z, Li H, Xu A (2006) Characterization, organization and expression of AmphiLysC, an acidic c-type lysozyme gene in amphioxus Branchiostoma belcheri tsingtauense. Gene 367:110–117. https://doi.org/10.1016/j.gene.2005.09.017ArticleCASPubMedGoogle Scholar
- Liu N, Zhang S, Liu Z, Gaowa S, Wang Y (2007) Characterization and expression of gamma-interferon-inducible lysosomal thiol reductase (GILT) gene in amphioxus Branchiostoma belcheri with implications for GILT in innate immune response. Mol Immunol 44(10):2631–2637. https://doi.org/10.1016/j.molimm.2006.12.013ArticleCASPubMedGoogle Scholar
- Liu J, Zhang S, Li L (2009) A transferrin-like homolog in amphioxus Branchiostoma belcheri: identification, expression and functional characterization. Mol Immunol 46(15):3117–3124. https://doi.org/10.1016/j.molimm.2009.06.001ArticleCASPubMedGoogle Scholar
- Liu X, Xu N, Zhang S (2013) Calreticulin is a microbial-binding molecule with phagocytosis-enhancing capacity. Fish Shellfish Immunol 35(3):776–784. https://doi.org/10.1016/j.fsi.2013.06.013ArticleCASGoogle Scholar
- Liu H, Lei M, Du X, Cui P, Zhang S (2015a) Identification of a novel antimicrobial peptide from amphioxus Branchiostoma japonicum by in silico and functional analyses. Sci Rep 5:18355. https://doi.org/10.1038/srep18355ArticleCASPubMedPubMed CentralGoogle Scholar
- Liu S, Liu Y, Yang S, Huang Y, Qin Q, Zhang S (2015b) Evolutionary conservation of molecular structure and antiviral function of a viral receptor, LGP2, in amphioxus Branchiostoma japonicum. Eur J Immunol 45(12):3404–3416. https://doi.org/10.1002/eji.201545860ArticleCASPubMedGoogle Scholar
- Markiewski MM, DeAngelis RA, Lambris JD (2006) Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol 43(1-2):45–56. https://doi.org/10.1016/j.molimm.2005.06.019ArticleCASPubMedGoogle Scholar
- Matsushita M, Matsushita A, Endo Y, Nakata M, Kojima N, Mizuochi T, Fujita T (2004) Origin of the classical complement pathway: lamprey orthologue of mammalian C1q acts as a lectin. Proc Natl Acad Sci U S A 101(27):10127–10131. https://doi.org/10.1073/pnas.0402180101ArticleCASPubMedPubMed CentralGoogle Scholar
- Mayer WE, Uinuk-Ool T, Tichy H, Gartland LA, Klein J, Cooper MD (2002) Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci U S A 99(22):14350–14355. https://doi.org/10.1073/pnas.212527499ArticleCASPubMedPubMed CentralGoogle Scholar
- Metchnikoff E (1891) Lectures on the comparative pathology of inflammation. Dover Publications, New York Google Scholar
- Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190 ArticleCASPubMedGoogle Scholar
- Möller PC, Philpott CW (1973a) The circulatory system of amphioxus (Branchiostoma floridae). II. Uptake of exogenous proteins by endothelial cells. Z Zellforsch Mikrosk Anat 143(1):135–141 ArticlePubMedGoogle Scholar
- Möller PC, Philpott CW (1973b) The circulatory system of amphioxus (Branchiostoma floridae). I. Morphology of the major vessels of the pharyngeal area. J Morphol 139:389–406 ArticlePubMedGoogle Scholar
- Morgan BP, Gasque P (1997) Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol 107(1):1–7 ArticleCASPubMedPubMed CentralGoogle Scholar
- Motta V, Soares F, Sun T, Philpott DJ (2015) NOD-like receptors: versatile cytosolic sentinels. Physiol Rev 95(1):149–178. https://doi.org/10.1152/physrev.00009.2014ArticlePubMedGoogle Scholar
- Müller J (1844) Über den Bau und die Lebenserscheinungen des Branchiostoma lubricum Costa, Amphioxus lanceolatus Yarrell. Druckerei der Königliche Akademie der Wissenschaften zu Berlin, pp 186–204 Google Scholar
- Mussabekova A, Daeffler L, Imler JL (2017) Innate and intrinsic antiviral immunity in Drosophila. Cell Mol Life Sci. https://doi.org/10.1007/s00018-017-2453-9ArticleCASPubMedGoogle Scholar
- Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58(9):701–713. https://doi.org/10.1007/s00251-006-0142-1ArticleCASPubMedPubMed CentralGoogle Scholar
- Nonaka M, Namikawa C, Kato Y, Sasaki M, Salter-Cid L, Flajnik MF (1997) Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. Proc Natl Acad Sci U S A 94(11):5789–5791 ArticleCASPubMedPubMed CentralGoogle Scholar
- Nonaka M, Azumi K, Ji X, Namikawa-Yamada C, Sasaki M, Saiga H, Dodds AW, Sekine H, Homma MK, Matsushita M, Endo Y, Fujita T (1999) Opsonic complement component C3 in the solitary ascidian, Halocynthia roretzi. J Immunol 162(1):387–391 CASPubMedGoogle Scholar
- Pan J, Liu M, Zhang S (2011) Interplay between amphioxus complement with fish macrophages: evidence for vertebrate-like alternative complement activation in the protochordate. J Ocean Univ China 10(4):357–361 ArticleGoogle Scholar
- Park Y, Hahm KS (2005) Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol 38(5):507–516 CASPubMedGoogle Scholar
- Peng J, Tao X, Li R, Hu J, Ruan J, Wang R, Yang M, Yang R, Dong X, Chen S, Xu A, Yuan S (2015) Novel toll/IL-1 receptor homologous region adaptors act as negative regulators in Amphioxus TLR signaling. J Immunol 195(7):3110–3118. https://doi.org/10.4049/jimmunol.1403003ArticleCASPubMedGoogle Scholar
- Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071. https://doi.org/10.1038/nature06967ArticleCASPubMedGoogle Scholar
- Qu B, Yang S, Ma Z, Gao Z, Zhang S (2016) A new LDLa domain-containing C-type lectin with bacterial agglutinating and binding activity in amphioxus. Gene 594(2):220–228. https://doi.org/10.1016/j.gene.2016.09.009ArticleCASPubMedGoogle Scholar
- Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5(3):85–87 ArticleCASPubMedGoogle Scholar
- Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–62. https://doi.org/10.1002/hep.21060ArticleCASPubMedGoogle Scholar
- Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187. https://doi.org/10.1159/000136357ArticleCASPubMedPubMed CentralGoogle Scholar
- Rähr (1979) The circulatory system of Amphioxus (Branchiostoma lanceolatum (Pallas)) : a light-microscopic investigation based on intravascular injection technique. Acta Zool 60(1):1–18 ArticleGoogle Scholar
- Rhodes CP, Ratcliffe NA, Rowley AF (1982) Presence of coelomocytes in the primitive chordate amphioxus (Branchiostoma lanceolatum). Science 217(4556):263–265 ArticleCASPubMedGoogle Scholar
- Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U S A 102(27):9577–9582. https://doi.org/10.1073/pnas.0502272102ArticleCASPubMedPubMed CentralGoogle Scholar
- Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA (2006) The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300(1):321–334. https://doi.org/10.1016/j.ydbio.2006.08.053ArticleCASPubMedGoogle Scholar
- Rowley AF (1982) Ultrastructural and cytochemical studies on the blood cells of the sea squirt, Ciona intestinalis. I. Stem cells and amoebocytes. Cell Tissue Res 223(2):403–414 ArticleCASPubMedGoogle Scholar
- Royet J, Dziarski R (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5(4):264–277. https://doi.org/10.1038/nrmicro1620ArticleCASPubMedGoogle Scholar
- Russell S, Young KM, Smith M, Hayes MA, Lumsden JS (2008) Identification, cloning and tissue localization of a rainbow trout (Oncorhynchus mykiss) intelectin-like protein that binds bacteria and chitin. Fish Shellfish Immunol 25(1–2):91–105. https://doi.org/10.1016/j.fsi.2008.02.018ArticleCASPubMedGoogle Scholar
- Saleh M (2011) The machinery of nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 243(1):235–246. https://doi.org/10.1111/j.1600-065X.2011.01045.xArticleCASPubMedGoogle Scholar
- Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A 107(4):1512–1517. https://doi.org/10.1073/pnas.0912986107ArticleCASPubMedPubMed CentralGoogle Scholar
- Sekine H, Kenjo A, Azumi K, Ohi G, Takahashi M, Kasukawa R, Ichikawa N, Nakata M, Mizuochi T, Matsushita M, Endo Y, Fujita T (2001) An ancient lectin-dependent complement system in an ascidian: novel lectin isolated from the plasma of the solitary ascidian, Halocynthia roretzi. J Immunol 167(8):4504–4510 ArticleCASPubMedGoogle Scholar
- Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682. https://doi.org/10.1016/j.cell.2005.08.012ArticleCASPubMedGoogle Scholar
- Shoji H, Nishi N, Hirashima M, Nakamura T (2003) Characterization of the Xenopus galectin family. Three structurally different types as in mammals and regulated expression during embryogenesis. J Biol Chem 278(14):12285–12293. https://doi.org/10.1074/jbc.M209008200ArticleCASPubMedGoogle Scholar
- Silva JR, Mendes EG, Mariano M (1995) Wound repair in the Amphioxus (Branchiostoma platae), an animal deprived of inflammatory phagocytes. J Invertebr Pathol 65(2):147–151. https://doi.org/10.1006/jipa.1995.1022ArticleCASPubMedGoogle Scholar
- Song X, Jin P, Hu J, Qin S, Chen L, Li-Ling J, Ma F (2012) Involvement of AmphiREL, a Rel-like gene identified in Brachiastoma belcheri, in LPS-induced response: implication for evolution of Rel subfamily genes. Genomics 99(6):361–369. https://doi.org/10.1016/j.ygeno.2012.03.002ArticleCASPubMedGoogle Scholar
- Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B (2017) The non-mammalian MIF superfamily. Immunobiology 222(3):473–482. https://doi.org/10.1016/j.imbio.2016.10.006ArticleCASPubMedGoogle Scholar
- Suzuki MM, Satoh N, Nonaka M (2002) C6-like and C3-like molecules from the cephalochordate, amphioxus, suggest a cytolytic complement system in invertebrates. J Mol Evol 54(5):671–679. https://doi.org/10.1007/s00239-001-0068-zArticleCASPubMedGoogle Scholar
- Takaoka A, Taniguchi T (2008) Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev 60(7):847–857. https://doi.org/10.1016/j.addr.2007.12.002ArticleCASPubMedGoogle Scholar
- Teng L, Gao B, Zhang S (2012) The first chordate big defensin: identification, expression and bioactivity. Fish Shellfish Immunol 32(4):572–577. https://doi.org/10.1016/j.fsi.2012.01.007ArticleCASPubMedGoogle Scholar
- Tessera V, Guida F, Juretic D, Tossi A (2012) Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences. FEBS J 279(5):724–736. https://doi.org/10.1111/j.1742-4658.2011.08463.xArticleCASPubMedGoogle Scholar
- Van Herreweghe JM, Michiels CW (2012) Invertebrate lysozymes: diversity and distribution, molecular mechanism and in vivo function. J Biosci 37(2):327–348 ArticleCASPubMedGoogle Scholar
- Wang Y, Zhang S (2011) Identification and expression of liver-specific genes after LPS challenge in amphioxus: the hepatic cecum as liver-like organ and "pre-hepatic" acute phase response. Funct Integr Genomics 11(1):111–118. https://doi.org/10.1007/s10142-010-0199-7ArticleCASPubMedGoogle Scholar
- Wang WJ, Cheng W, Luo M, Yan Q, Yu HM, Li Q, Cao DD, Huang S, Xu A, Mariuzza RA, Chen Y, Zhou CZ (2015) Activity augmentation of Amphioxus peptidoglycan recognition protein BbtPGRP3 via fusion with a chitin binding domain. PLoS One 10(10):e0140953. https://doi.org/10.1371/journal.pone.0140953ArticleCASPubMedPubMed CentralGoogle Scholar
- Weitman E, Cuzzone D, Mehrara BJ (2013) Tissue engineering and regeneration of lymphatic structures. Future Oncol 9(9):1365–1374. https://doi.org/10.2217/fon.13.110ArticleCASPubMedGoogle Scholar
- Welsch U (1975) The fine structure of the pharynx, cryptopodocytes and digestive caecum of amphioxus (Branchiostoma lanceolatum). Symp Zool Soc Lond 36:17–41 Google Scholar
- Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249(4975):1431–1433 ArticleCASPubMedGoogle Scholar
- Wu F, Chen L, Liu X, Wang H, Su P, Han Y, Feng B, Qiao X, Zhao J, Ma N, Liu H, Zheng Z, Li Q (2013) Lamprey variable lymphocyte receptors mediate complement-dependent cytotoxicity. J Immunol 190(3):922–930. https://doi.org/10.4049/jimmunol.1200876ArticleCASPubMedGoogle Scholar
- Xu AL (2011) Amphioxus immunity: tracing the origins of human immunity. Science Press, Beijing Google Scholar
- Xu N, Zhang S (2012) Identification, expression and bioactivity of a chitotriosidase-like homolog in amphioxus: dependence of enzymatic and antifungal activities on the chitin-binding domain. Mol Immunol 51(1):57–65. https://doi.org/10.1016/j.molimm.2012.02.003ArticleCASPubMedGoogle Scholar
- Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740. https://doi.org/10.1016/j.molcel.2005.08.014ArticleCASPubMedGoogle Scholar
- Xu L, Yuan S, Li J, Ruan J, Huang S, Yang M, Huang H, Chen S, Ren Z, Xu A (2011) The conservation and uniqueness of the caspase family in the basal chordate, amphioxus. BMC Biol 9:60. https://doi.org/10.1186/1741-7007-9-60ArticleCASPubMedPubMed CentralGoogle Scholar
- Xu N, Pan J, Liu S, Xue Q, Zhang S (2014) Three in one: identification, expression and enzymatic activity of lysozymes in amphioxus. Dev Comp Immunol 46(2):508–517. https://doi.org/10.1016/j.dci.2014.06.007ArticleCASPubMedGoogle Scholar
- Yan J, Wang J, Zhao Y, Zhang J, Bai C, Zhang C, Li K, Zhang H, Du X, Feng L (2012) Identification of an amphioxus intelectin homolog that preferably agglutinates gram-positive over gram-negative bacteria likely due to different binding capacity to LPS and PGN. Fish Shellfish Immunol 33(1):11–20. https://doi.org/10.1016/j.fsi.2012.03.023ArticleCASPubMedGoogle Scholar
- Yan J, Xu L, Zhang Y, Zhang C, Zhao F, Feng L (2013a) Comparative genomic and phylogenetic analyses of the intelectin gene family: implications for their origin and evolution. Dev Comp Immunol 41(2):189–199. https://doi.org/10.1016/j.dci.2013.04.016ArticleCASPubMedGoogle Scholar
- Yan J, Zhang C, Zhang Y, Li K, Xu L, Guo L, Kong Y, Feng L (2013b) Characterization and comparative analyses of two amphioxus intelectins involved in the innate immune response. Fish Shellfish Immunol 34(5):1139–1146. https://doi.org/10.1016/j.fsi.2013.01.017ArticleCASPubMedGoogle Scholar
- Yang M, Yuan S, Huang S, Li J, Xu L, Huang H, Tao X, Peng J, Xu A (2011) Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates. Cell Res 21(10):1410–1423. https://doi.org/10.1038/cr.2011.156ArticleCASPubMedPubMed CentralGoogle Scholar
- Yang R, Zheng T, Cai X, Yu Y, Yu C, Guo L, Huang S, Zhu W, Zhu R, Yan Q, Ren Z, Chen S, Xu A (2013) Genome-wide analyses of amphioxus microRNAs reveal an immune regulation via miR-92d targeting C3. J Immunol 190(4):1491–1500. https://doi.org/10.4049/jimmunol.1200801ArticleCASPubMedGoogle Scholar
- Yang P, Huang S, Yan X, Huang G, Dong X, Zheng T, Yuan D, Wang R, Li R, Tan Y, Xu A (2014) Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radic Biol Med 70:54–67. https://doi.org/10.1016/j.freeradbiomed.2014.02.007ArticleCASPubMedGoogle Scholar
- Yao F, Li Z, Zhang Y, Zhang S (2012) A novel short peptidoglycan recognition protein in amphioxus: identification, expression and bioactivity. Dev Comp Immunol 38(2):332–341. https://doi.org/10.1016/j.dci.2012.07.009ArticleCASPubMedGoogle Scholar
- Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. https://doi.org/10.1038/nrm2308ArticleCASPubMedGoogle Scholar
- Yu C, Dong M, Wu X, Li S, Huang S, Su J, Wei J, Shen Y, Mou C, Xie X, Lin J, Yuan S, Yu X, Yu Y, Du J, Zhang S, Peng X, Xiang M, Xu A (2005) Genes "waiting" for recruitment by the adaptive immune system: the insights from amphioxus. J Immunol 174(6):3493–3500 ArticleCASPubMedGoogle Scholar
- Yu Y, Huang H, Feng K, Pan M, Yuan S, Huang S, Wu T, Guo L, Dong M, Chen S, Xu A (2007a) A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol 179(12):8425–8434 ArticleCASPubMedGoogle Scholar
- Yu Y, Yuan S, Huang H, Feng K, Pan M, Huang S, Dong M, Chen S, Xu A (2007b) Molecular and biochemical characterization of galectin from amphioxus: primitive galectin of chordates participated in the infection processes. Glycobiology 17(7):774–783. https://doi.org/10.1093/glycob/cwm044ArticleCASPubMedGoogle Scholar
- Yu Y, Huang H, Wang Y, Yuan S, Huang S, Pan M, Feng K, Xu A (2008) A novel C1q family member of amphioxus was revealed to have a partial function of vertebrate C1q molecule. J Immunol 181(10):7024–7032. https://doi.org/10.4049/jimmunol.181.10.7024ArticleCASPubMedGoogle Scholar
- Yuan S, Huang S, Zhang W, Wu T, Dong M, Yu Y, Liu T, Wu K, Liu H, Yang M, Zhang H, Xu A (2009a) An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-kappaB pathway via MyD88. Mol Immunol 46(11–12):2348–2356. https://doi.org/10.1016/j.molimm.2009.03.022ArticleCASPubMedGoogle Scholar
- Yuan S, Liu T, Huang S, Wu T, Huang L, Liu H, Tao X, Yang M, Wu K, Yu Y, Dong M, Xu A (2009b) Genomic and functional uniqueness of the TNF receptor-associated factor gene family in amphioxus, the basal chordate. J Immunol 183(7):4560–4568. https://doi.org/10.4049/jimmunol.0901537ArticleCASPubMedGoogle Scholar
- Yuan S, Liu H, Gu M, Xu L, Huang S, Ren Z, Xu A (2010a) Characterization of the extrinsic apoptotic pathway in the basal chordate amphioxus. Sci Signal 3(139):ra66. https://doi.org/10.1126/scisignal.2000906ArticleCASPubMedGoogle Scholar
- Yuan S, Wu K, Yang M, Xu L, Huang L, Liu H, Tao X, Huang S, Xu A (2010b) Amphioxus SARM involved in neural development may function as a suppressor of TLR signaling. J Immunol 184(12):6874–6881. https://doi.org/10.4049/jimmunol.0903675ArticleCASPubMedGoogle Scholar
- Yuan S, Zhang J, Zhang L, Huang L, Peng J, Huang S, Chen S, Xu A (2013) The archaic roles of the amphioxus NF-kappaB/IkappaB complex in innate immune responses. J Immunol 191(3):1220–1230. https://doi.org/10.4049/jimmunol.1203527ArticleCASPubMedGoogle Scholar
- Yuan S, Dong X, Tao X, Xu L, Ruan J, Peng J, Xu A (2014a) Emergence of the A20/ABIN-mediated inhibition of NF-kappaB signaling via modifying the ubiquitinated proteins in a basal chordate. Proc Natl Acad Sci U S A 111(18):6720–6725. https://doi.org/10.1073/pnas.1321187111ArticleCASPubMedPubMed CentralGoogle Scholar
- Yuan S, Tao X, Huang S, Chen S, Xu A (2014b) Comparative immune systems in animals. Annu Rev Anim Biosci 2:235–258. https://doi.org/10.1146/annurev-animal-031412-103634ArticleCASPubMedGoogle Scholar
- Yuan S, Ruan J, Huang S, Chen S, Xu A (2015a) Amphioxus as a model for investigating evolution of the vertebrate immune system. Dev Comp Immunol 48(2):297–305. https://doi.org/10.1016/j.dci.2014.05.004ArticleCASPubMedGoogle Scholar
- Yuan S, Zheng T, Li P, Yang R, Ruan J, Huang S, Wu Z, Xu A (2015b) Characterization of Amphioxus IFN regulatory factor family reveals an archaic signaling framework for innate immune response. J Immunol 195(12):5657–5666. https://doi.org/10.4049/jimmunol.1501927ArticleCASPubMedGoogle Scholar
- Zhang S, Wang C, Wang Y, Wei R, Jiang G, Ju H (2003) Presence and characterization of complement-like activity in the amphioxus Branchiostoma belcheri tsingtauense. Zool Sci 20(10):1207–1214. https://doi.org/10.2108/zsj.20.1207ArticleCASGoogle Scholar
- Zhang SM, Zeng Y, Loker ES (2007) Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics 59(11):883–898. https://doi.org/10.1007/s00251-007-0245-3ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang Y, Xu K, Deng A, Fu X, Xu A, Liu X (2014) An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1. Proc Natl Acad Sci U S A 111(1):397–402. https://doi.org/10.1073/pnas.1318843111ArticleCASPubMedGoogle Scholar
- Zmasek CM, Zhang Q, Ye Y, Godzik A (2007) Surprising complexity of the ancestral apoptosis network. Genome Biol 8(10):R226. https://doi.org/10.1186/gb-2007-8-10-r226ArticleCASPubMedPubMed CentralGoogle Scholar
Acknowledgments
During the writing of this chapter, the authors were supported by grants (U1401211; 31601862) from the Natural Science Foundation of China, and by the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China.